Genetic evaluation in Sweden and Interbeef

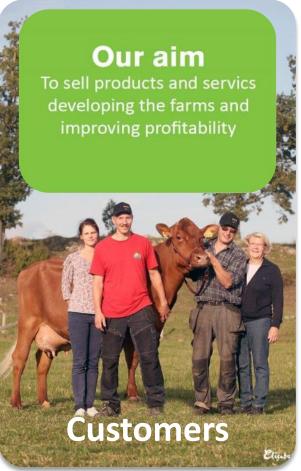
World Charolais Congress 2018 Emma Carlén

Outline

Short about Växa Sverige and our responsibility within beef cattle breeding

 Swedish beef breeding programs with emphasis on the national genetic evaluation

Nordic and international cooperation with focus on status in Interbeef


Växa vision: contribute to a sustainable, VÄXA competitive agricultural production....

Services for beef producers

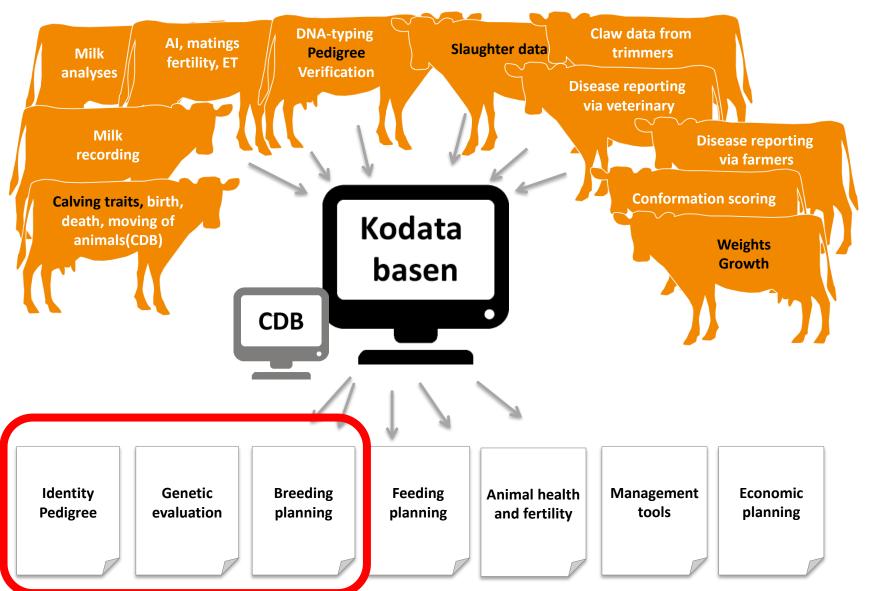
- Fertility: Al service and pregnancy test
- Collect registrations: calvings, weights, conformation, horn status etc.
- Advice to plan/follow-up production and breeding
- Statistics and bench-marking
- Pedigree verifications and herd books
- Cattle data base and breeding values

Växa: role and responsibility within breeding

 Official national breeding organization for Swedish cattle breeds

7 dairy breeds and 7 beef breeds

- Responsible for:
 - Breeding goals
 - Breeding values
 - Herd book and data base



Cooperation on national, Nordic and international level.

National decision about breeding goals etc. in specific boards.

Our cattle data base is unique...

Beef part of cattle data base: KAP = Kött Avel Produktion

KAP- avel (breeding)

- Pedigree herds that sell breeding animals with official pedigree, herdbook and breeding values
- Birth, weaning (200d) and yearling (365d) weights
- Calving and slaughter traits

KAP-production

 Production herds with suckler cows and slaughter animals that wants follow-up on calvings, growth and slaughter results

Approx. 8 % of the total number of Swedish suckler cows participate in beef recording

Parts of a breeding program

Registration of traits

Breeding goal

Genetic progress

Genetic evaluation

Selection of breeding animals

Breeding goal

- Each breed association has recommendations of how the breed should develop genetically
- For 5 breeds it is expressed by a Total Merit Index = combined breeding value based on economic importance of traits
 - Breeding value trait 1 * economic weight trait 1 +
 Breeding value trait 2 * economic weight trait 2

Registration of traits - Statistics from KAP

Herds and cows in KAP 2016	No. of herds	No of purebred cows	No. of other cows	Cows/herds
Pedigree herds	646	14390	2781	26,6
Production herds	95	1776	2580	45,9

Calving results 2016– heifers and cows

Breed	No. of calvings	Age 1st calv. (mo)	% difficult calvings*	% stillbirth
Charolais	4354	26,4	1,4	2,7
Hereford	2852	25,9	1,8	3,4
Simmental	1897	25,0	1,7	2,1
Angus	1443	26,0	1,4	2,3
Limousin	1260	27,6	0,7	1,8
All purebred	13038	26,9	1,5	2,5

^{*} Trait in genetic evaluation

Weight results 2016 – example bulls

Breed	# bulls	Birth wt (kg)*	# bulls	200d wt (kg)*	# bulls	365d wt (kg)*
Charolais	1669	49	1438	319	1148	594
Hereford	1266	44	1045	283	764	502
Simmental	822	49	730	355	497	612
Angus	545	40	552	287	353	497
Limousin	503	43	445	291	356	529

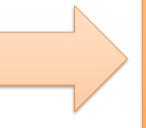
Slaughter results 2016 – example young bulls

Breed	# bulls	Slaughter wt (kg)*	Carcass conformation (1 poor-15 excellent)*		Age (mo)	Slaughter growth (g/d)
Charolais	995	389,8	9,7	7,3	15,6	770
Hereford	451	345,1	7,5	8,1	18,4	579
Simmental	357	382,9	9	7,2	15,9	746
Angus	112	344,7	7,7	8	18,8	567
Limousin	216	373,6	11,2	6,7	16,4	705

^{*} Trait in genetic evaluation

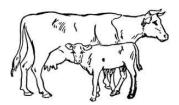
Official national genetic evaluation beef breeds

- Published 3 times/year
 - Feb/March, Mid-May, Mid-Nov
- BLUP-method
 - 3 multi-trait animal models
- 11 single breeding values (EBVs) based on phenotypes for 7 breeds
 - Aberdeen angus, Blonde d'aquitaine, Charolais, Hereford, Highland cattle, Limousin and Simmental
- 3 sub-indices and 1 total merit index for 5 breeds
 - Not for Blonde and Highland



We also participate in international genetic evaluation....

Model for growth traits (since 2000)



- Birth weight
- 200d weight
- 365d weight

5 + 1 official EBVs

- BWT direct
- BWT maternal
- 200d direct
- 200d maternal
- 365d
- Total growth

Maternal EBVs

- based on registrations on calves after a cow
- describes genetic ability of the cow to affect the trait expressed in the calf
- 200d mat cow's genetic capacity for milk production affecting early growth

Model for carcass traits (since 2005)

- Slaughter weight
- Carscass conformation
- Carcass fat
- + 3 indirect traits:

Birth weight, 200d weight,

365d weight

3 official EBVs

- Carcass gain
- Carcass conformation
- Carcass fat

Marbling – a future trait of interest for genetic evaluation?

Model for calving traits (since 2005)

Calving ease (1st parity cows)

+ 3 indirect traits:

Calving ease (later

parities), Birth weight

(first and later parities)

2 official EBVs

- CAE direct
- CAE maternal

- Low but unfavorable genetic correlation between direct and materal effect
- A bigger cow has easier calvings but if her calf is also bigger it might have more difficulties being born...

Sub-indices and total merit index (since 2009)

- Angus, Charolais, Hereford, Limousin, Simmental
- Breed-specific economic weights

3 sub-indices

- FIX=Födelseindex (Birth)
- MIX=Modersindex (Maternal)
- PIX=Produktionsindex (Production)

1 total merit index

AIX=Avelsindex ("the breeding goal")

Sub-indices for improving trait groups

Birth index (FIX) – based on CAE direct

Describes calf's genetic capacity to be easily born

Maternal index (MIX) – based on CAE mat and 200d mat

Describes the cow's genetic capacity to have easy calvings and give calves with high growth (through high milk production)

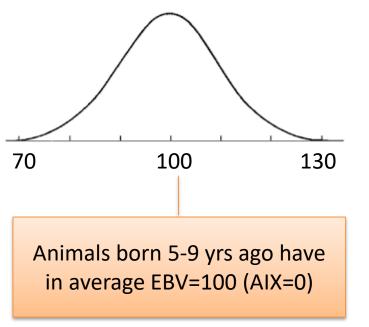
Production index (PIX) – based on carcass gain, carcass conformation and carcass fat

Describes the animal's genetic capacity for high growth and carcass quality

Total merit index (AIX)

Describes genetic capacity for profit

Economic weights for Charolais – Expressed on the scale of relative breeding values

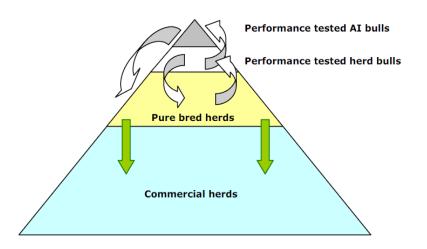

	Weight	Rel. Wt (%)
MIX		
CAE mat	0,1	4
200 mat	0,3	13
PIX		
Carcass gain	0,7	30
Carcass conformation	0,3	13
Carcass fat	0,1	4
FIX		
CAE dir	0,8	35

Weights give an idea but not the full picture of the effect of a breeding goal

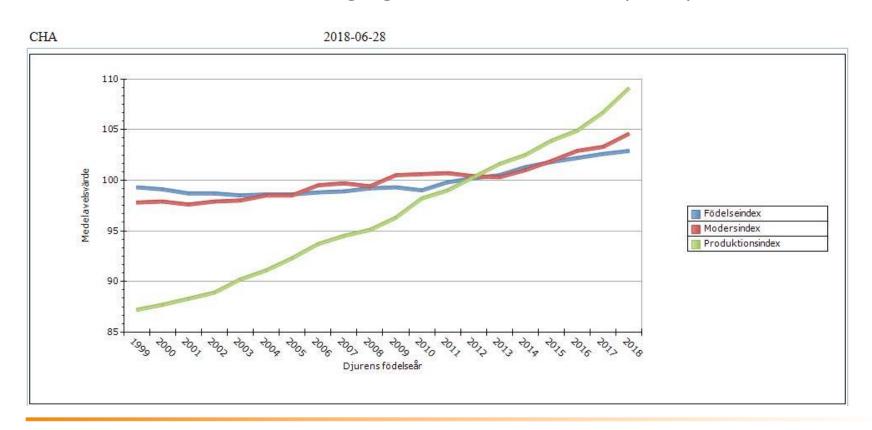
Presented breeding values

- The genetic capacity...
 - Presented as relative breeding values
 - Can be back-translated into kg, score...

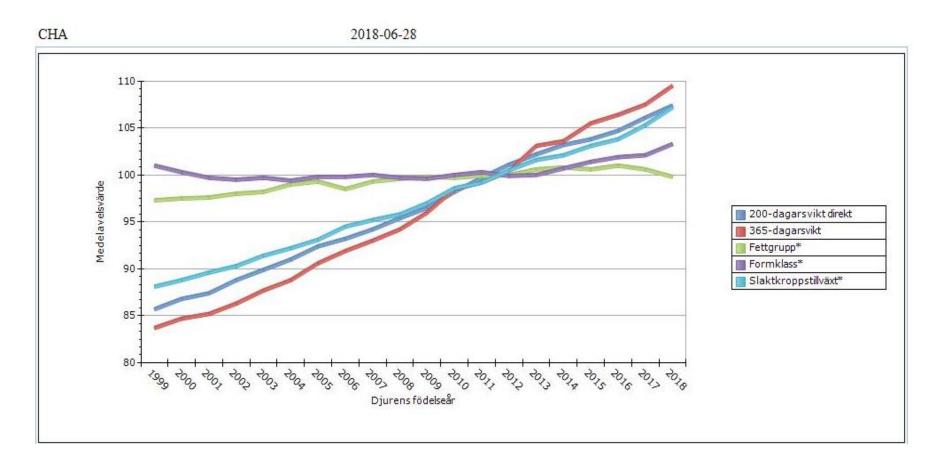
- ...predicted with a certain reliability
 - Depends on heritability and available info
 - Differ a lot between AI bull and a calf


Breeding values of importance in different levels of selection in the breeding program (herd level, test stations, AI company)...

Breeding program for Charolais


Covered more in previous presentation

- Charolais breeding goal
- Performance test station
 - Registrations
 - Tools for selection:
 - Growth index (T-tal)
 - New index coming combining:
 - Growth, conformation, breeding values etc...
- AI bulls
 - Selected to perform well both in beef and dairy herds


Genetic progress in Swedish Charolais

- Improved genetics for total profit and sub-indices:
 - FIX: calves that are born more easily
 - MIX: cows with easy calvings and high milk production
 - PIX: animals with high growth and carcass quality

Genetic progress in Swedish Charolais

- Example on improved genetics for single EBVs for production:
 - Carcass gain: improved growth rate to slaughter
 - Carcass conformation: improved carcass quality

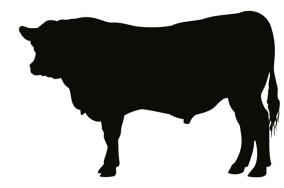
Challenges for national beef breeding

- Often small beef breed populations
- Limited with resources
- Weak genetic links (herds, countries)
- Difficult to identify suitable bulls/AI for import

Nordic and international cooperation is important

Nordisk Avlsværdi Vurdering Nordic Cattle Genetic Evaluation

- Joint genetic evaluation and TMI for dairy breeds
- Soon: joint evaluation of AI beef bulls used in dairy herds
- Board decision for joint genetic evaluation for beef breeds
- Currently participates jointly in Interbeef for beef breeds
- Interbeef
 - International evaluation for beef breeds



Nordic evaluation of AI beef breeds used in dairy herds I

- Increased used of beef semen in dairy herds
 - Dairy farmers wants to select beef bulls (across breed) giving profitable crossbred calves

- Nordic Breeding values coming (end 2018)
 - Calving traits in first and later parities
 - Carcass traits based on heifers and bulls

Nordic evaluation of AI beef bulls used in dairy herds II

- Crossbred calves
 - Dam: purebred dairy cow
 - Sire: purebred AI beef bull
- Sire breed used differs between county
 - Proportion crossbred calves \rightarrow

Sire breed	DNK	FIN	SWE
Angus	1.9	16.9	11.3
Blonde	3.2	22.8	2.2
Danish Blue	66.9	-	-
Simmental (beef)	6.6	9.2	27.1
Charolais	3.6	9.2	26.4
Hereford	0.6	4.2	18.4
Highland	0.0	0.1	0.2
INRA	4.3	-	-
Limousin	12.7	37.7	14.3

Freddy Fikse

Nordic genetic evaluation of purebred beef breeds

- Will be developed for breeds and traits in current national evaluations
- Work initiated via joint participation in Interbeef

Summed number of animals (expressed in thousands) with records for the most common breeds in the 3 national evaluations (201605)

	СНА	HER	LIM
Calving ease	301	352	390
Birth wt	275	247	244
200d wt	166	132	94
Carcass wt	128	185	235

Future traits of interest: female fertility, longevity, conformation

Difficulties with international exchange of breeding animals based on foreign breeding values

Different breeding goals

Different calculations/methods

Different registrations

Different genetic levels

Different scales for EBVs

Different environments

International EBVs for comparing animals across countries

- Uses all known pedigree within and across populations
- Handles differences in national evaluations
- Possibility for greater genetic progress

International EBVs beef breeds – 3 advantages

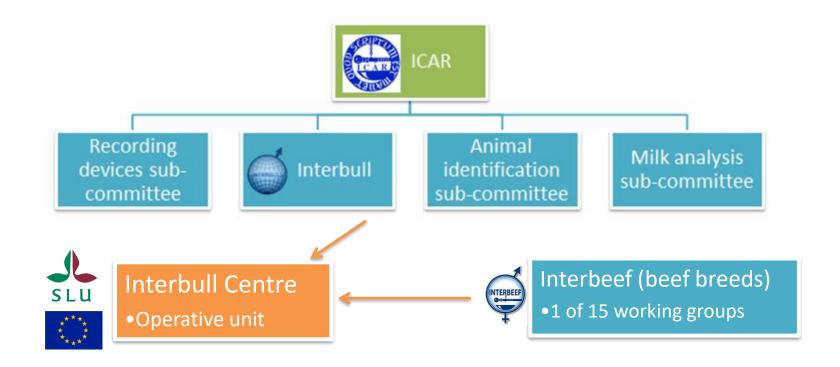
1. Import animals/AI

 small populations have a higher need for foreign genetic material suitable for our breeding goals

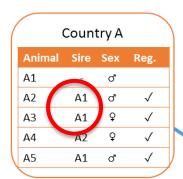
2. Export animals/Al

Increased possibilities to sell/spread high quality genetics

3. More reliable breeding values


 For foreign animals or domestic animals with foreign pedigree

Interbeef - organization structure


- ICAR = International Committee for Animal Recording
- Interbull = International Bull Evaluation Service (1983)
 - Perform international dairy evaluations

Principle for Interbeef

- Country registrations and pedigree
 - Genetic links needed

- Genetic model accounts for differences
 - Registrations from different countriesdifferent traits
- One EBV per country for each animal
 - Re-ranking occurs

Ranking of animals based on breeding values

Country A

A4

A5

B4

B3

A3

B1

A2

B2

A1

Interbeef international genetic evaluation

Ranking of animals based on breeding values

CountryB

B3

A5

A4

B2

A3

B1

Α1

A2

INTERBEEF - current routine

- 1st official Interbeef EBVs 2015 (Jan)
- Currently 3 traits direct and maternal EBVs
 - Adj. weaning weight
 - Birth weight
 - Calving ease
- …and 3 breeds
 - Charolais, Limousin, beef Simmental
- 2 official runs/year (March and Nov)
- Participating populations/countries
 - CHE, CZE, DEU, **DFS** (Denmark, Finland, Sweden),
 FRA, IRL, GBR (LIM) + AUS

Publication of results

- Official Interbeef results on DFS scale for single traits from NAVs web page: www.nordicebv.info
- Current top list of internationally official charolais bulls based on weaning weigt direct

Ranking	International ID	International name	Birth year	Birth date	AWW direct - Breeding value	AWW direct - Reliability (%)
1	CHAFRAM007121963595	IMPOSANT	2013	20130322	148	49
2	CHAFRAM005109037940	EPERNAY	2009	20090913	147	69
3	CHASWEM020923167708	DAYBREAKER AV SONARP	2008	20080324	147	80
4	CHASWEM064631190809	ENOK AV NYBO	2009	20090309	147	85
5	CHAFRAM005706034572	ILESTLA	2013	20130314	146	47

...and top 6 on calving ease direct...

CHAFRAM003615085279	ADONIS-LP	2005	148	43
CHAFRAM007121074461	VIZIR P	2004	137	81
CHAFINM000009501891	Kauniais Durango	2008	137	79
CHAFRAM005811112678	HERACLES	2012	135	54
CHAFRAM005703810336	GLASGOW	2011	134	65
CHASWEM056278223908	DANNY BOY AV JATSBERG	2008	134	80

Development ongoing in Interbeef

- New traits in different research projects
 - Female fertility (age 1st calving, calving interval, number of calvings)
 - Slaughter traits
- More breeds
 - Crosses (after purebred beef sire)
 - ANG, HER
- Co-operation with ABRI/Breedplan and new countries...
- Facilitate genomic evaluation

Large differences between countries – many have too small populations and little resources to predict national genomic EBVs for beef

Take home message...

 National beef breeding in Sweden is wellorganized but genetic progress is limited by small populations and lack of resources

 International cooperation is needed to facilitate exchange of genetics and to increase progress by including new traits and genomics

Thanks for your attention and enjoy your stay in Sweden!

Emma.Carlen@vxa.se